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1 Introduction

The goal of an enormous empirical literature is to estimate the (average) rate of returns to

schooling. Knowledge of the causal effect of school attainment on labor market rewards is

crucial to drawing policy implications. Much of this research uses standard OLS estimates

of variants of the human capital earnings function known as the “Mincer equation”(Mincer

1974):

ln y = β0 + β1S + β2X + β3X
2 + ε,

where y denotes some measure of earnings, S denotes the years of schooling, X stands for the

years of experience, and ε is the wage residual.1 The coeffi cient on schooling measures the

(percentage) effect of incremental increases in schooling on earnings and is interpreted as the

rate of return to schooling.2 However, OLS estimates of returns to schooling are potentially

biased because they cannot disentangle the effect of education on earnings from unobserved

personal traits (e.g., innate skills or ability) correlated with schooling. Individuals with a

higher level of skills will be more likely to obtain additional schooling. Therefore, OLS

estimates of the schooling coeffi cient are upward-biased estimates of the true returns to

schooling.

The search for methods for the estimation of the schooling coeffi cient has been ongoing

for several decades. Different researchers use varying identification assumptions to correct

the potential bias in OLS estimates. The literature is voluminous but can be categorized

into several groups. The first approach includes explicit measures of ability in the wage

regression.3 However, the available test scores are, at best, proxies for the ability that is

rewarded in the labor market. The second approach is largely focused on looking for valid

instrumental variables (IV ) that exploit the natural variation in factors affecting schooling

decision.4 Alternatively, data on twins (or siblings) are used to eliminate omitted-ability

bias on the assumption that much of this ability is common across twins and can therefore

1Heckman, Lochner, and Todd (2006) challenge Mincer’s functional form assumptions as well as the
validity of using schooling coeffi cient as the measure of returns to schooling. Belzil and Hansen (2002)
emphasize non-linearity in schooling. All the theoretical analyses do not rely on the specific functional form,
although in the empirical study I follow Mincer’s functional form assumptions, as is common in the literature.

2This interpretation is based on the model of human capital production in competitive market first
proposed by Ben-Porath (1967). In wage equations derived from equilibrium search models (Burdett and
Mortensen 1998), the schooling coeffi cient recovers composites of skill production parameters and other
structural parameters, such as those of the job search technology (Wolpin 2003).

3For example, the Knowledge of the World of Work test score (Griliches 1977) and test scores from the
Armed Services Vocational Aptitude Battery (Blackburn and Neumark 1995).

4Examples of instruments include Vietnam draft lottery (Angrist and Krueger 1992), date of birth (Angrist
and Krueger 1991), minimum school leaving age (Harmon and Walker 1995), college proximity (Card 1993),
college tuition (Kane and Rouse 1995), school subsidy (Lemieux and Card 2001), and school building program
(Duflo 2001). Card (1999) provides an excellent survey.
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be differenced out.5

OLS estimates of the average rate of return to schooling are somewhat stable across data

sets from a given time period in the US.6 With controls for test scores or family background,

or other proxies for innate ability, estimates of the schooling coeffi cient are lower, indicating

an upward ability bias. Although the IV approach has been developed to correct the upward

bias in OLS estimates, the resulting estimates of the schooling coeffi cient using IV s are

mostly as large or larger than the corresponding OLS estimates (Card 2001).

In this paper, I formulate and implement a standard dynamic discrete choice model of

endogenous education and employment following Keane and Wolpin (1997) to investigate

whether observed OLS and IV estimates of schooling returns in the Mincer equation can

be reproduced in such models. To illustrate, a stylized two-period model of schooling and

employment choices is considered first, and its analytical solution is derived. OLS and IV es-

timators are obtained under alternative assumptions on individual endowment, preferences,

and behavior. These estimates are compared with the population average returns to school-

ing, and the sources of biases are discussed. In a generic specification of the model with

ability heterogeneity, both OLS and IV estimates of schooling coeffi cients in the Mincer

wage equation may be greater than or less than the true average returns to schooling, and

their relative magnitude is indeterminate. Therefore, the dynamic choice model is adequately

flexible to account for the observed estimates of schooling returns.

To assess quantitatively the model performance in accounting for observed schooling

returns (i.e., OLS and IV estimates), I formulate and then estimate a dynamic choice

model of human capital accumulation both in school and on the job. The model considers

heterogeneous individuals characterized by different returns to schooling and utilities of

attending school. Self-selection is controlled in the behavior model by allowing for unobserved

types, and the dynamic decision process is solved for each type. Hence, the model implements

a correction for selection biases. The model is estimated using a panel of white females

taken from the National Longitudinal Survey of Youth 1979 (NLSY79). The estimates of

population average return to schooling are in accordance with those from the literature on

life-cycle education and employment choices.7

Individual choices on educational attainment and work experience are simulated from the

estimated dynamic choice model along with wages. Mincer wage equations are estimated

by OLS using the simulated data. Although wages are generated for a population with

5This approach is exemplified in Ashenfelter and Krueger (1994), Ashenfelter and Rouse (1998), among
others. Rosenzweig and Wolpin (2000) provide insightful comments to this line of research.

6Increase in college premium in the US since the 1980s is well documented (e.g., Katz and Murphy 1992).
Returns to education also vary across countries (e.g., Psacharopoulos 1994).

7See Belzil (2007) for an excellent survey.

2



relatively low rates of return to schooling (in the range of 3% to 6%), the OLS estimates are

significantly higher (approximately 10%). The addition of a large number of ability measures

in the wage regression reduces the schooling coeffi cient, indicating an upward ability bias.

However, even if individual skill type is known and controlled, individual heterogeneity in the

values of school and leisure will affect schooling and work decisions in a systematic manner

that biases the schooling return estimates.

In addition, I investigate the properties of standard IV estimators by employing two IV s

that are widely used in the literature, namely, the presence of a local college and a college

subsidy program. Model simulation with instruments (interventions) mimics the scenario of

a controlled experiment. Mincer wage equations are estimated using the IV technique, and

the results are compared with OLS estimates and the population average. I find that an

unbiased estimate of weighted average return to schooling may be generated by using the

IV approach, but the requirements are stringent. First, the instrument must be strongly

correlated with education outcome. Second, the instrument has to be strictly exogenous.

Finally, dynamic employment selection has to be controlled. When these three conditions

are satisfied, I find that the IV estimator is bounded by the maximal and minimal returns

to schooling in the population. If any of the conditions is violated, an IV estimate may

lie outside the support of the distribution of true returns and may be greater than the

corresponding OLS estimate. In particular, IV estimates are very sensitive to the variations

in schooling induced by the instrument. A small correlation between the instrument and the

unobserved heterogeneity may result in a large bias in the estimated schooling coeffi cient.

Overall, the estimates of schooling returns using OLS and IV methods are in accordance

with the empirically estimated schooling returns using various data sets and also conform to

the theoretical results derived from the simple model.

This paper is related to the literature on the discrepancy between OLS and IV estimates

of schooling returns. The empirical analysis in Ashenfelter and Krueger (1994) suggests that

the measurement error problem is important and that the OLS estimate is, in fact, biased

downward. However, this study does not consider potential endogeneity bias in the schooling

coeffi cient. Card (2001) postulates that returns to schooling vary in the population. The

fact that IV estimates are larger than OLS estimates suggests that the return for the

marginal person is greater than that for the average person. The same fact can be generated

because OLS and IV estimates are different weighted averages of marginal treatment effects

(Carneiro and Heckman 2003). Belzil and Hansen (2007) argue that an instrument that aims

at increasing school attendance will not only affect the marginal person who would not have

attended school, but also the continuation probabilities of those who have already attended

school. Even if the marginal person has low returns to schooling, the IV estimates could be
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higher than the corresponding OLS estimates if the latter group has very high returns to

schooling. Bound, Jaeger and Baker (1995) show that even a weak correlation between the

instrument and the unobserved heterogeneity that affects wages can lead to a large bias in the

IV estimator of the schooling coeffi cient by investigating the study of Angrist and Krueger

(1991). However, the literature suggests no consensus on the features of the underlying data

structure that produces the observed OLS and IV estimates of schooling returns or on why

both estimates may lie outside the support of the true schooling return distribution.

The remainder of this paper is organized as follows: Section 2 presents a simple behav-

ioral model, derives the OLS and IV estimators under alternative assumptions, and then

discusses their properties. Section 3 briefly reviews the empirical model and the estimation

result. Section 4 applies OLS and IV procedures on simulated data and then analyzes the

implications. Section 5 concludes.

2 An Illustrative Model

2.1 A Two-period Model

In this section, I lay out a canonical model of schooling and employment decisions. Each

person lives for two periods in the model and is endowed with ability µ, where µ is a

draw from distribution Fµ (·) defined on a finite set Ω. In the first period, an individual

either attends school and pays a fixed cost cs, or works in the labor market. In the second

period, the individual can no longer attend school and decides whether to work or stay

at home. Following Becker (1975) and Mincer (1974), individuals face different levels of

earnings associated with alternative schooling choices, work experience, and innate ability.

Earnings depend on years of schooling (S), years of experience (X), innate ability (µ), and

idiosyncratic productivity shocks (ε); they are denoted by y (S,X, µ, ε) . Both schooling and

experience enhance productivity; thus, ∂y/∂S > 0 and ∂y/∂X > 0. The earnings function

is assumed to take the form of

ln y (S,X, µ, ε) = gS,µ (S,X, µ) + ε. (1)

The contemporaneous utility is assumed to be linear in consumption (ct) and leisure (vt) .

The value of leisure, v, is also assumed to depend on education, experience, and ability. Each

individual solves the following optimization problem:

max
s1∈{0,1},h2∈{0,1}

E{c1 + β [c2 + v (S2, X2, µ) (1− h2)]} (2)
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s.t. c1 + cs · s1 = (1− s1)y(S1, X1, µ, ε1) (3)

c2 = h2y(S2, X2, µ, ε2) (4)

where s1 equals 1 if school attendance is chosen and 0 otherwise, h2 equals 1 if employment

is chosen and 0 otherwise, and β is the discount rate. The expectation is taken over the

distribution of the earnings. Note that, for each individual, the innate ability µ is persistent,

but ε1, ε2 are i.i.d. shocks drawn from distribution Fε (·) .
The model is solved backwards. At t = 2, the alternative-specific value function condi-

tional on individual education, experience, and ability can be written as follows:

V2(h2 = 1|S2, X2, µ) = y(S2, X2, µ, ε2),

V2(h2 = 0|S2, X2, µ) = v(S2, X2, µ).

The individual works if and only if

ε2 ≥ ε∗2(S2, X2, µ) = ln v(S2, X2, µ)− gS,µ (S2, X2, µ) . (5)

If ∂ ln v/∂S > ∂g/∂S, the income effect dominates. As an individual becomes more educated,

she values leisure more; therefore, she is less likely to work. If ∂ ln v/∂S < ∂g/∂S, the

substitution effect dominates. As an individual becomes more educated, her opportunity

cost of leisure is higher; therefore, she is more likely to work.

At t = 1, the present value of attending school is

V1[(s1 = 1, h1 = 0)] = −cs+ βEmax[V2(h2 = 1), V2 (h2 = 0) |S2 = 1, X2 = 0, µ],

= −cs+ β

[∫ ε∗2(1,0,µ)

−∞
v(1, 0, µ)dFε(ε) +

∫ ∞
ε∗2(1,0,µ)

y(1, 0, µ, ε)dFε(ε)

]
.

The present value of working is

V1 [(s1 = 0, h1 = 1)] = y(0, 0, µ, ε1) + βEmax[V2(h2 = 1), V2(h2 = 0)|S2 = 0, X2 = 1, µ]

= y(0, 0, µ, ε1) + β

[∫ ε∗2(0,1,µ)

−∞
v(0, 1, µ)dFε(ε) +

∫ ∞
ε∗2(0,1,µ)

y(0, 1, µ, ε)dFε(ε)

]
.

An individual attends school if and only if

V1[(s1 = 1, h1 = 0)] ≥ V1 [(s1 = 0, h1 = 1)] .

The employment decision is characterized by the following cut-off rule: an individual works
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(and does not attend school) if and only if

ε1 ≥ ε∗1(µ). (6)

Clearly, schooling is negatively correlated with the productivity shocks. Schooling is also

correlated with ability, but the sign of correlation ∂ε∗1(µ)/∂µ is indeterminate without further

restrictions.8

2.2 Returns to Schooling

Returns to schooling are defined as the average return to S = 1 in the population. Condi-

tional on experience X, the average return b equals

Eµ,ε [ln y (1, X, µ, ε)− ln y (0, X, µ, ε)] (7)

=

∫ ∫
[ln y (1, X, µ, ε)− ln y (0, X, µ, ε)] fµ (µ) fε (ε) dµdε,

where fµ and fε are density functions of µ and ε.

Although the two-period model is simple, it illustrates the self-selection in the observed

earnings. At t = 1, y(0, 0, µ, ε1) is observed if and only if ε1 ≥ ε∗1(µ). At t = 2, y (0, 1, µ, ε2)

is observed if and only if ε1 ≥ ε∗1(µ) and ε2 ≥ ε∗2(0, 1, µ); y (1, 0, µ, ε2) is observed if and only

if ε1 < ε∗1(µ) and ε2 ≥ ε∗2(1, 0, µ).

When cross-sectional observed wages are used in both periods, the OLS estimator cal-

culates the difference between the average earnings of the more educated (S = 1) and the

average earnings of the less educated (S = 0) . Let Ω1 be the set of individuals that attend

school and Ω0 = Ω\Ω1 be the set of individuals that do not attend school. Conditional on

8At ε∗1 (µ), an individual with ability µ is indifferent between attending school and working.

−cs+ β
[∫ ε∗2(1,0,µ)

−∞
v (1, 0, µ) dF (ε) +

∫ ∞
ε∗2(1,0,µ)

y (1, 0, µ, ε) dF (ε)

]

= exp[gS,µ(0, 0, µ) + ε
∗
1 (µ)] + β

[∫ ε∗2(0,1,µ)

−∞
v (0, 1, µ) dF (ε) +

∫ ∞
ε∗2(0,1,µ)

y (0, 1, µ, ε) dF (ε)

]

Taking the total derivative yields ∂ε∗1(µ)
∂µ . As µ increases, both the opportunity cost of schooling and future

return will increase. Therefore, the effect of µ on school enrollment is theoretically indeterminate. Empirical
evidence shows that its effect on opportunity cost is typically below its effect on future returns, and thus a
positive correlation between ability and school enrollment is observed.
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X = 0, the OLS estimate of returns to schooling is9

bOLS = Eµ,ε [ln y (1, 0, µ, ε)− ln y (0, 0, µ, ε)]

=

∫
Ω1

∫ ∞
ε∗2(1,0,µ)

ln y (1, 0, µ, ε) fε (ε) dεfµ (µ) dµ (8)

−
∫

Ω0

∫ ∞
ε∗1(µ)

ln y (0, 0, µ, ε) fε (ε) dεfµ (µ) dµ.

To demonstrate what the IV method estimates, I consider a policy instrument. Compul-

sory schooling is a widely used instrument following Angrist and Krueger (1991). Consider

a compulsory schooling law that forces a randomly selected half of all individuals to attend

school. Those that are not subject to the law are used as the control group as their schooling

decision is not affected. The other half subject to the law become the treatment group. The

IV estimator identifies the local average treatment effect (LATE) introduced in Imbens and

Angrist (1994), i.e., the average returns of these individuals who would not have attended

school without the enforcement of compulsory schooling law.10 Therefore,

bIV =

∫
Ω0

∫ ∞
ε∗2(1,0,µ)

ln y (1, 0, µ, ε) fε (ε) dεfµ (µ) dµ (9)

−
∫

Ω0

∫ ∞
ε∗1(µ)

ln y (0, 0, µ, ε) fε (ε) dεfµ (µ) dµ.

Equations (8) and (9) show that OLS and IV are the weighted average of returns to

education for different sub-populations. As individuals vary in endowment (innate ability)

and luck (idiosyncratic shock), they self-select themselves into different schooling levels and

employment status. The IV estimate may be greater than the OLS estimate even without

measurement error in observed schooling.

Next, I simplify the general framework to discuss the properties of the OLS and IV

estimators under alternative assumptions. In particular, I assume that ability differs only in

two types, which are denoted by µ1 and µ0, where µ1 > µ0, and let π be the proportion of

type µ1.

9Strictly speaking, in the model the OLS estimator conditional on X = 0 (i.e., controlling for experience)
is the difference between the second period wages of those who do attend school and the first period wages of
those who do not. However, a typical cross-sectional sample usually has individuals from different cohorts,
thus the OLS estimator conditional on experience can compare the observed wages of those who do attend
school with the wages of those who do not from the same time period.
10As emphasized by Heckman and Urzúa (2010), IV is a weighted average of the effects for individuals

induced into a state from different margins. In this simple case, IV induces behavior change only from one
margin.
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Case 1: Exogenous employment decision

Assume that individuals always work when they are not in school. Thus, the only decision

is whether to attend school in the first period. There is no uncertainty in earnings, and

earnings only depend on schooling and ability. A high-ability individual is more productive

at all schooling levels and their corresponding occupations, i.e., ln y (S, µ) = g (S, µ) and

∂g/∂µ > 0. The value of choosing to attend school is

V (S = 1) = −cs+ βy (1, µ) ,

and the value of not attending school is

V (S = 0) = y(0, µ) + βy (0, µ) .

The decision rule is to attend school if V (S = 1) ≥ V (S = 0). If

β
∂y(1, µ)

∂µ
− (1 + β)

∂y (0, µ)

∂µ
> 0,

then individuals with ability at or above some cut-off value of ability µ∗ would attend school

and those below it would not. Assume that µ1 > µ∗ > µ0. The optimization of school-

ing choice then creates a positive correlation between ability and completed schooling. All

high-ability individuals will attend school, and all low-ability ones will not. Based on ob-

served wages, the OLS estimate of the return to schooling calculates the earnings differences

between the two schooling groups:

bOLS = Eµ[ln y (1, µ) |S = 1]− Eµ[ln y (0, µ) |S = 0]

= Eµ[ln y (1, µ) |µ ≥ µ∗]− Eµ[ln y (0, µ) |µ < µ∗]

= ln y (1, µ1)− ln y (0, µ0) .

The “true” return for high-ability individuals is ln y (1, µ1) − ln y (0, µ1) and that for low-

ability individuals is ln y (1, µ0)− ln y (0, µ0) . The average returns to schooling in the popu-

lation are

b = Eµ [ln y (1, µ)− ln y (0, µ)]

= π [ln y (1, µ1)− ln y (0, µ1)] + (1− π) [ln y (1, µ0)− ln y (0, µ0)] .

OLS estimate is unbiased if and only if ability is homogeneous, and therefore there is no

selection into school based on ability. The bias of OLS estimate is easy to calculate and is
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determined by

bOLS − b = (1− π) [ln y (1, µ1)− ln y (1, µ0)] + π [ln y (0, µ1)− ln y (0, µ0)] .

As ∂y(1,µ)
∂µ

> 0 and ∂y(0,µ)
∂µ

> 0, bOLS > b. This difference is known as the “ability bias.”Note

that even when the returns to schooling are identical in both ability types, i.e., ln y (1, µ1)−
ln y (0, µ1) = ln y (1, µ0)− ln y (0, µ0) , OLS estimate is still upward biased.

Instrumental variables are used to obtain an estimate of returns to schooling without

ability bias. Consider a compulsory schooling law that forces a randomly selected half of

individuals to attend school. The Wald estimate of returns to schooling then compares the

earnings of the control group and the treatment group, and it is determined by

bIV = Eµ [ln y (1, µ) |µ < µ∗]− Eµ [ln y (0, µ) |µ < µ∗]

= ln y (1, µ0)− ln y (0, µ0) .

Therefore, the IV estimator identifies returns to schooling for the low ability type.

If returns to schooling are identical for all ability groups, IV estimate is unbiased and

consistent. If returns to schooling are heterogeneous in the population, then IV estimate is

biased. In particular, when the average return to schooling is higher for the type affected by

the instrument

ln y (1, µ0)− ln y (0, µ0) > ln y (1, µ1)− ln y (0, µ1) ,

then IV estimate is upward biased. This is Card’s (2001) hypothesis on why IV estimates

of the returns to schooling are typically as large or larger than the corresponding OLS

estimates. He suggests that if low-ability individuals choose a low schooling level because

of the higher than average costs of schooling, rather than because of the lower than average

returns to schooling, IV estimates will overstate the average marginal return to schooling in

the population by identifying the “local average treatment effect.”However, in this example,

although IV estimate is upward biased, it remains smaller than OLS estimate. To be

consistent with the empirical results, OLS estimate has to be downward biased for reasons

beyond the “ability bias.”11

Case 2: Endogenous employment decision and homogeneous ability

Schooling is negatively correlated with productivity shock when labor supply is endoge-

nous. Those who receive high wages are more likely to leave school earlier. To study the

effect of endogenous employment separately, I assume that the population is homogeneous in

11Measurement error in schooling is a classical source of downward bias (Griliches 1977).
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ability for now, and I suppress µ in functions of earnings such that ln y (S,X, ε) = g (S,X)+ε.

The decision rule then becomes: at t = 1, an individual attends school if and only if ε1 < ε∗1

and at t = 2, an individual works if and only if ε2 ≥ ε∗2 (S,X) . The average returns to

schooling conditional on X equal

b (X) = Eε [ln y (1, X, ε)− ln y (0, X, ε)]

=

∫
[ln y (1, X, ε)− ln y (0, X, ε)] fε (ε) dε.

OLS estimate conditional on X = 0 identifies

bOLS =

∫ ∞
ε∗2(1,0)

ln y (1, 0, ε) fε (ε) dε−
∫ ∞
ε∗1

ln y (0, 0, ε) fε (ε) dε.

Owing to employment selection, OLS estimates are biased. If the magnitude of sample

selection is smaller in the second period, the OLS estimates are lower than the true returns.

For example, consider an extreme case in which there is no sample selection in the second

period, i.e., ε∗2(1, 0) = −∞. It is trivial that bOLS (X = 0) < b (X = 0) .

Again, if a compulsory schooling law forces a randomly selected half to attend school in

the first period, then IV estimates are determined by

bIV =

∫ ∞
ε∗2(1,0)

ln y (1, 0, ε) fε (ε) dε−
∫ ∞
ε∗1

ln y (0, 0, ε) fε (ε) dε.

As ε1 and ε2 are i.i.d., bOLS = bIV . When the population is homogeneous and productivity

shocks are serially uncorrelated, OLS and IV estimates are the same, and they are likely to

be downward biased.

Case 3: Endogenous employment decision and heterogeneous ability

Next, I consider a more realistic case similar to the model presented in Equations (2)—(4),

where employment decision is endogenous and individual ability differs in two types, µ1 and

µ0, µ1 > µ0. Population size is normalized to one, and let π be the proportion of type µ1.

The decision rule is such that at t = 1, an individual attends school if and only if ε1 < ε∗1 (µ)

as defined in Equation (6), and at t = 2, an individual works if and only if ε2 ≥ ε∗2 (S,X, µ)

as defined in Equation (5). The average returns to schooling conditional on X = 0 equal

b = π

∫
[ln y (1, 0, µ1, ε)− ln y (0, 0, µ1, ε)] fε (ε) dε

+(1− π)

∫
[ln y (1, 0, µ0, ε)− ln y (0, 0, µ0, ε)] fε (ε) dε.
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The choice model predicts that πF (ε∗1(µ1)) of type µ1 and (1− π)F (ε∗1(µ0)) of type

µ0 will attend school in the first period. Therefore, OLS estimates of returns to schooling

conditional on X = 0 are determined by

bOLS = πγ1

∫ ∞
ε∗2(1,0,µ1)

ln y (1, 0, µ1, ε) fε (ε) dε+ (1− π) γ0

∫ ∞
ε∗2(1,0,µ0)

ln y (1, 0, µ0, ε) fε (ε) dε

−π(1− γ1)

∫ ∞
ε∗1(µ1)

ln y (0, 0, µ1, ε) fε (ε) dε− (1− π) (1− γ0)

∫ ∞
ε∗1(µ0)

ln y (0, 0, µ0, ε) fε (ε) dε.

where γ1 = F (ε∗1(µ1)) and γ0 = F (ε∗1(µ0)). Hence,

bOLS − b

= π(γ1 − 1)

∫ ∞
ε∗2(1,0,µ1)

ln y (1, 0, µ1, ε) fε (ε) dε+ (1− π) (γ0 − 1)

∫ ∞
ε∗2(1,0,µ0)

ln y (1, 0, µ0, ε) fε (ε) dε

+πγ1

∫ ∞
ε∗1(µ1)

ln y (0, 0, µ1, ε) fε (ε) dε+ (1− π) γ0

∫ ∞
ε∗1(µ0)

ln y (0, 0, µ0, ε) fε (ε) dε.

Similarly a compulsory schooling law will send a random half of those who would have

worked in the first period to school. Therefore, IV procedure identifies

bIV = π(1− γ1)

∫ ∞
ε∗2(1,0,µ1)

ln y (1, 0, µ1, ε) fε (ε) dε+ (1− π) (1− γ0)

∫ ∞
ε∗2(1,0,µ0)

ln y (1, 0, µ0, ε) fε (ε) dε

−π(1− γ1)

∫ ∞
ε∗1(µ1)

ln y (0, 0, µ1, ε) fε (ε) dε− (1− π) (1− γ0)

∫ ∞
ε∗1(µ0)

ln y (0, 0, µ0, ε) fε (ε) dε.

The difference between IV estimate and OLS estimate is

bIV − bOLS
= π(1− 2γ1)

∫ ∞
ε∗2(1,0,µ1)

ln y (1, 0, µ1, ε) fε (ε) dε+ (1− π) (1− 2γ0)

∫ ∞
ε∗2(1,0,µ0)

ln y (1, 0, µ0, ε) fε (ε) dε.

The sign of the differences between the true return, OLS, and IV estimates depends on the

relative size of the skill types (π) , and selections in schooling choice (ε∗1) and employment

choice (ε∗2) , which both depend on individual heterogeneity µ.

Table 1 summarizes the properties of OLS and IV estimates of returns to schooling under

various assumptions. The result presented in this table is based on a one-time discrete choice

of school attendance and on using compulsory schooling as an instrument, which forces a

randomly selected half to attend school.

As discussed above, OLS and IV procedures generate consistent estimates of returns

to schooling under very strict assumptions. A dynamic model of endogenous schooling
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and employment choices for heterogenous individuals is capable of generating OLS and

IV estimates of schooling returns in accordance with those observed in the data. That is,

OLS estimates are likely to be upward biased, and IV estimates may be greater than OLS

estimates.

3 The Empirical Model

In this section, I present an empirical model in which individuals make school attendance

and employment decisions simultaneously. The model is an extended version of the dy-

namic discrete choice model discussed in the previous section. I structually estimate the

model to recover the underlying preference parameters, as well as the ability and earnings

distributions.

3.1 The Model

The previous discussion demonstrates that sample selection based on employment choice

may be an important source of bias when returns to schooling are estimated in a reduced-

form earnings regression. To assess better the effect of work experience on estimates of

returns to schooling, I consider the life-cycle choices of women, who have larger variations

in employment choices than men.

Consider a model in which young women make joint decisions on school attendance and

work.12 Each year, a woman with a high school degree decides whether to attend college

and whether to work. In total, there are four mutually exclusive and exhaustive alternatives.

Let st and ht be the indicators for school attendance and employment, respectively. Each

alternative will be (st, ht) ∈ J = {(st, ht) : st ∈ {0, 1}, ht ∈ {0, 1}}. The contemporaneous
utility Ut (st, ht) associated with choice (st, ht) is given by

Ut (ct, st, ht) = (α1 + α2st + α3ht)ct (10)

+v1st + v2(1− ht) + v3st(1− st−1) + v4stht + ε
(s,h)
t .

The utility function is assumed to be linear in consumption ct. The marginal utility of con-

sumption depends on college attendance and employment as captured by the parameters α2

and α3, respectively. Parameters v1 and v2 evaluate the net utility of attending school and the

net utility of not working, respectively. Parameter v3 captures the adjustment cost of return-

ing to school, and v4 captures the additional (dis)utility of attending school while working.

12The decision model closely follows Keane and Wolpin’s (1997) model on career decisions of young men
and is a simplified version of Ge (2011).
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Finally, ε(s,h)
t s are alternative-specific random components representing random variations in

the individual’s preference for school and work. They are known to the individual in period

t but are unknown before t.

The choice decision is subject to the budget constraint given by

ct + cS · st = ytht. (11)

cS is the direct cost of schooling. The direct cost of one year in college equals cs. A college

degree is assumed to be completed in four years. When a woman attends graduate school,

she pays an additional tuition cost cg, that is, cS = cs+ cg. yt denotes the annual earnings

of the woman. The budget constraint is assumed to be satisfied period by period.13

An unemployed woman receives job offers with probability p0 every year. As in Eckstein

and Wolpin (1989), potential annual earnings are obtained by multiplying hourly wage by

2000 hours, that is, yt = wt · 2000. Essentially, each woman is assumed to be deciding about

full-time work, and the wage rate is assumed to be independent of hours worked. For the

purpose of this work, I specify the earnings function in detail. Hourly wage offer is assumed

to be dependent on prior education and work experience, as measured by cumulative years

of schooling St, cumulative years of experience Xt, and an idiosyncratic shock. Thus, the

wage function is given by

lnwt = β0 + β1St + β2Xt + β3X
2
t + εwt.

The schooling coeffi cient β1 measures the earnings return to each additional year of school.

The quadratic term in work experience is meant to capture the depreciation of human capital,

such that wage is hump-shaped over the life cycle. The productivity shock εwt is normally

distributed with a mean zero and standard deviation σw. A measurement error in observed

wages is allowed, such that lnwo = lnw + u, where wo is the observed wage, w is the true

wage, and the error term is normally distributed: u ∼ N (0, σ2
u). At time t, the woman

observes the wage rate (hereby earnings) and then decides whether to work. Before time

t, she does not observe εwt, but she knows how wage and earnings evolve, as well as the

distribution of εwt. She is also aware of the expected earnings gains from education in the

labor market, as denoted by β1.

The model considered above corresponds to the decision problem of a representative

woman. However, young women differ in numerous aspects, such as their family backgrounds

13The saving decision is simplified from the model because limited evidence exists to support that borrowing
constraints play an important role in educational attainment (Cameron and Heckman 1998, 2001; Cameron
and Taber 2004).
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as measured by parental education levels, number of siblings, and family income; as well as

their cognitive backgrounds, as measured by Armed Forces Qualification Test (AFQT) scores.

The abilities and preferences of individual women are also likely to vary in unobserved ways

(e.g., motivation, perseverance, or ambition) that are both persistent and correlated with

observed traits. These characteristics may affect a young woman’s college and employment

decisions, as well as her earnings.

Assume that there exist k = 1, 2, · · · , K different skill types. Denote the ex ante prob-

ability that a woman i is of type k by πki . Let π
k
i depend on her observed initial traits,

including mother’s schooling Smi , father’s schooling S
f
i , number of siblings N

sib
i , household

structure (whether she lives with both parents) at age 14 HHi, net family income Y 0
i , AFQT

score AFQTi, and age at high school graduation AGE0
i , in the form of a multinomial logit.

For k = 2, · · · , K,

πki =

exp

[
λk0 + λk1S

m
i + λk2S

f
i + λk3N

sib
i + λk4HHi

+λk5Y
0
i + λk6AFQTi + λk7AGE

0
i

]

1 +
∑K

l=2 exp

[
λl0 + λl1S

m
i + λl2S

f
i + λl3N

sib
i + λl4HHi

+λl5Y
0
i + λl6AFQTi + λl7AGE

0
i

] , (12)

and normalize π1
i as 1−

∑K
k=2 π

k
i .
14

Women of different skill types have distinct preferences for school and non-employment

(the v′s in the utility function), as well as different earning returns to schooling (β1). There-

fore, these parameters are type specific and potentially correlated with observed character-

istics. For skill type k, the wage offer when working after college is determined by

lnwit = β0 + βk1Sit + β2Xit + β3X
2
it + εiwt. (13)

Therefore, the earnings function has random coeffi cients because of individual heterogeneity.

The costs and benefits of choices on school and employment are also affected by a number

of individual-specific exogenous factors. In particular, the direct cost of college for individual

i at date t is specified as

csit = γ0 + γ1Colit + uit. (14)

The variable Colit is a dummy for the presence of any college in individual i’s county of

residence. Card (1993) and a number of subsequent studies show that the existence of a

local college reduces the cost of college. Therefore, the coeffi cient γ1 is expected to be

14The unobserved types may vary in multidimensional skills and preferences such as innate ability, mo-
tivation, perseverance, and tastes for school, and they have no natural ordering. Therefore a multinomial
logit model for types is chosen over an ordered logit model.
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negative. The constant γ0 represents the cost of college in a county without a local college.

The error term uit is i.i.d. idiosyncratic shocks, which can be absorbed into the utility shocks

associated with school attendance.

The objective of individual i is to maximize the expected present discounted value of

utility over a finite horizon from the first year after high school graduation to a known

terminal time T , that is,

max
{cit,sit,hit}

E

[
T∑
t=1

βt−1Uit(cit, sit, hit|Ψit)

]
,

where β > 0 is the woman’s subjective discount factor, and Ψit is the state space at time t.

The state space consists of all factors, known to the person, that affect current utilities or

the probability distribution of any of the future utilities. Choice of the optimal sequence of

control variables {cit, sit, hit} for t = 1, · · · , T maximizes the expected present value given
the current realization of the state space. The model can be solved backwards numerically.

To solve the optimization problem, the value function Vit(Ψit) is defined as the maximal

value of the individual i’s optimization problem at t

Vit(Ψit) = max
{cit,sit,hit}

E

[
Ti∑
τ=t

βτ−tU(ciτ , siτ , hiτ |Ψit)

]
. (15)

The value function can be written as the maximum over alternative-specific value functions

Vit(Ψit) = max(st,ht)∈J{V
(s,h)
it (Ψit)}, which obeys the Bellman equation

V
(s,h)
it (Ψit) = Uit (ct, st, ht) + βE[Vit+1(Ψit+1)|Ψit, (st, ht) is chosen at t]. (16)

The alternative-specific value function assumes that future choices are optimally made for

any given current decision.

The solution to the model can be characterized by sequential cut-off rules. In this

multiple-period model with multiple choices, the cut-off values do not have analytical forms,

but the model can be solved backwards, and the cut-off values can be simulated numeri-

cally. Similar to Keane and Wolpin (2001) and Eckstein and Wolpin (1999), the backward

recursion starts at a computationally convenient terminal period, Ti = T ∗.15 During the first

T ∗ − 1 periods, for each individual i, the model is solved explicitly. At the terminal period

15In the empirical estimation, the terminal period is set to 10, such that T ∗ = 10. The model was solved
explicitly for 10 years for all individuals.
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T ∗,

V
(s,h)
iT ∗ (ΨiT ∗) = UiT ∗ (cT ∗ , sT ∗ , hT ∗) + βE[ViT ∗+1(ΨiT ∗+1)|ΨiT ∗ , (sT ∗ , hT ∗) is chosen at T ∗].

(17)

Similar to the rest of the model, prior random shocks to wages or preferences only affect

decisions through state variables, including years of schooling and experience. Therefore,

a polynomial form of the state variables at the terminal period was used to estimate the

terminal value function16, that is,

ViT ∗+1(ΨiT ∗+1) = δ1SiT ∗+1 + δ2XiT ∗+1 + δ3X
2
iT ∗+1. (18)

The parameters of this terminal condition are estimated along with the structural parameters

of the model.

Using the end condition and assuming a known distribution of εit, each individual’s opti-

mization problem was solved recursively from the final period T ∗. Solving the dynamic pro-

gramming problem requires high-dimensional integrations for computing the “Emax func-

tion” at each point of the state space. As discussed in Keane and Wolpin (1994), Monte

Carlo integrations were used to evaluate the integrals.

3.2 Data and Estimation Method

The micro data are taken from the 1979 to 1998 waves of the NLSY79. The empirical

analysis is based on a sample of 487 females who graduated from high school between 1980

and 1983, with a total of 4,770 person-year observations. Table 2 shows the proportion of

women who choose each of the four alternatives and their average wages for 10 years after

high school graduation. Among all women in the sample, 48.5% attended college in the first

year after high school graduation. The proportion of full-time college attendees decreases

annually throughout the first three years. After the fourth year, a discrete drop is observed,

corresponding to typical college graduation. The labor force participation rate exhibits the

well-known hump shape. It increases from 43% to approximately 80% in the first six years

and then becomes flat and declines slightly.17 The proportion of working students hovers at

approximately 11% in the first four years and falls to approximately 6% after seven years,

16In an early specification search, a skill-type specific constant was included in the terminal condition.
However, the estimated values were not significant from zero; therefore, the constant was dropped from
Equation (18).
17NLSY79 work history records weekly hours worked for each week since the beginning of 1978. Annual

hours worked is based on accumulating weekly hours worked over a year. A woman in the model is defined
as employed (full-time) if her working hours are reported during at least 26 weeks of the year, and annual
hours worked are at least 1000 hours.
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reflecting the fact that some women return to school. Observed real hourly wage increases

from $6.17 to $12.70 over the 10 years for those who are employed. All wages are measured in

2000 dollars. Detailed family and cognitive background variables, such as parental education

and AFQT scores, are constructed for the selected sample. These background variables are

highly correlated with school outcomes.

Table 3 presents the average year-to-year transition rates. The row percentage is the

percentage of transition from origin to destination choices, and the column percentage is the

percentage in a particular destination choice that started from each origin. The transition

matrix provides evidence on strong state dependence, as indicated by the large percentages on

the diagonal. An individual who is in school full time (not working) in one year stays in school

full time the next year 58% of the time (row percentage), whereas 76% of those in school

full time in any year came from school the previous year (column percentage). Considerable

state dependence is also observed in employment. Approximately 86% of employed workers

not in school in one year remained employed the following year. Table 3 also reveals the

considerable immobility in the no school and no work option, but the working at school

option is less persistent as people move out of school over time.

The model is estimated by the simulated maximum likelihood. At any time t, denote

the vector of outcomes as Ot = {(st, ht), wot }. The likelihood function for a sample of I
individuals from period t = 1, 2, ..., T ∗ is given by

ΠI
i=1 Pr(Oi1, Oi2, ..., OiT ∗ |Ψi0),

where Ψi0 is the initial state space. The joint serial independence among the shocks im-

plies that the likelihood function can be written as the product of within-period outcome

probabilities.

The solution to the individual’s optimization problem provides the within-period choice

probabilities. To illustrate the computation of the likelihood, let us consider a specific

outcome at some period. Suppose a woman who chooses not to attend school (s = 0) but

opts to work full time instead (h = 1) reports receiving a wage wot in period t. Further,

assume that the individual enters the period being unemployed and having state space Ψt.

The probability of this outcome is

Pr[(0, 1), wot |Ψt]

= p0 Pr[V
(0,1)
t = max

j∈J
V j
t |wt,Ψt] Pr(wt, w

o
t |Ψt). (19)

This probability has three components: the first term on the right-hand side is the proba-
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bility of receiving a job offer p0; the second term is the choice probability of not attending

school and accepting the job offer; and the last term on the right-hand side of (19) is the

probability of observing the woman’s wage wot . The choice probability involves the calcula-

tion of multivariate integrals, similar to general multinomial choice problems. I calculate the

joint probability of choosing (st = 0, ht = 1) conditional on the true wage by a smoothed

simulator following Eckstein and Wolpin (1999). For each of n = 1, 2, ..., N draws of the

error vector, the ε′s, a smoothed simulator of the probability that (0, 1) is chosen, is given

by the kernel

exp[
V

(0,1)
tn −maxj∈J(V j

tn)

τ
]/
∑
i

exp[
V i
tn −maxj∈J(V j

tn)

τ
],

with τ as the smoothing parameter, which is set to 500. The integral is then the average

of the kernel over the N draws. The probabilities of observing a reported wage wot for the

woman are the joint density of the observed and true wages. The probabilities of other

outcomes are calculated in a similar manner.

For the selected sample indexed by i = 1, · · · , I, I observe each individual’s family and
cognitive background, the presence of any college at her county of residence Coli, schooling,

employment status every year (sit, hit), and wages if employed (woit) for t = 1, · · · , T ∗. I
assume that the parameters describing the initial preferences, ability, and market skills are

related to the measured family and cognitive background. As previously discussed, there are

K discrete types in total, and each type is described by a vector of parameters. The likelihood

function for individual i in this case is a finite mixture of the type-specific likelihoods, that

is,

Li (θ) =
T ∗∏
t=1

K∑
k=1

πki Pr[(sit, hit), w
o
it|Ψit],

where the skill-type probability πki is determined by Equation (12). The sample log-likelihood

function is

logL(θ) =

I∑
i=1

logLi(θ).

The resulting estimate of θ, θ̂ satisfies

√
N(θ̂ − θ0)→ N(0, E[si(θ0)si(θ0)′]−1),

where si(θ0) = ∂Li(θ0)/∂θ′, and θ0 is the true value of θ.
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3.3 Estimation Results

The model is fit with three skill types (K = 3). I present the estimates of the earnings

equation and preference heterogeneity in Table 4.18 The population appears to be very

heterogeneous. The rate of return to schooling is the lowest for the first type, followed by

type two, whereas type three has the highest return to schooling. Each additional year

of schooling increases wages by 2.9%, 4.3%, and 5.9%, respectively, for each type. The

estimated utility values of school indicate significant preference heterogeneity among skill

types. According to the rank order of the values, type three has the highest value of school,

followed by type two, with type one as the lowest, independent of working status. Type

three has the highest value of non-employment, and type two has the highest cost to return

to school. According to estimated logit parameters in type probabilities (not shown), higher

parental education, fewer siblings, living with both parents at age 14, higher family income,

good AFQT score, and graduation from high school at an early age imply a higher probability

of being skill type two relative to type one. Parental schooling, family income, and AFQT

score also have a positive (but lesser) effect on the probability of being skill type three.

Given the estimated parameters, I calculate the predicted proportions of women who

choose each alternative in every year after high school. Figure 1 shows the fit of the model

to the choice proportions. Each of the profiles implied by the estimated model has approx-

imately the right shape and matches the levels of the data closely. Table 5 presents the

predicted average year-to-year transitions rates, compared with the actual percentages of

transition from origin to destination choices as shown in Table 3. The model can match

transitions reasonably well. The data demonstrates much persistence in each state; the

model recovers persistence in the state of full-time school attendance (not working) and in

the state of full-time employment (not attending school) but understates the persistence in

nonemployment when women are not in school. Figure 2 demonstrates further the fitting

of wage distribution. The model-predicted wage moments follow the data closely overall,

but there is a rise in wages between the 5th and 8th year that is not well predicted by the

model. This discrepancy indicates that a simple log wage equation cannot capture all the

year-to-year wage dynamics over the lifetime.

The empirical model is a more realistic version of the two-period discrete choice model

discussed in the previous section. Several features of the model are important to our discus-

18Given that the cost of college (cs) enters the model linearly with the value of schooling, γ0 is set to be
7,515 in the estimation based on the estimates from the National Center for Education Statistics from 1980 to
1988 (NCES 1990, 285, Table 291). I did not attempt to estimate the discount factor β because it is unlikely
to be well identified separately from the terminal value function. Therefore it is set to 0.96, corresponding to
an annual interest rate of approximately 4%. The full set of parameter estimates are available upon request
from the author.
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sion on the observed estimates of returns to schooling.

First, heterogeneity is explicitly modeled. Individuals differ in family and cognitive back-

grounds, which are observed. The model also allows the ability and preference of individuals,

which are both persistent and correlated with observed traits, to vary in unobserved ways

(e.g., motivation, perseverance, or ambition). Self-selection is controlled in the behavior

model by allowing for unobserved types in skills, and the dynamic decision process is solved

for each type. Hence, the model implements a correction for the selection bias.

Second, returns to schooling vary in the population and have relatively tight bound

between 3% and 6%. Once the distribution of returns to schooling is known, properties of

various estimators can be evaluated.

Third, an endogenous employment decision generates a selected sample of observed wages,

and this employment selection depends on work experience. If there is a high wage realization

at time t, and an individual chooses to work, then at time t + 1, her experience is higher,

and she is more likely to work. The cutoff wage realization for her to choose to work could

be lower.

4 Simulations

4.1 Simulated Data and Sample Statistics

Based on within-sample goodness of fit, the dynamic discrete choice model can be concluded

to be a good approximation of how individuals make schooling and employment decisions.

In the remainder of the paper, I will treat this estimated behavioral model as the true

underlying data-generating process and simulate individual lifetime choices and their labor

market outcomes. The joint decision on schooling and employment determine the realized

(observed) wages.

A total of 100,000 individuals’schooling and employment choices are simulated for 10

years based on the estimated model. I first resample (with replacement) individuals’ ini-

tial traits, including mother’s schooling, father’s schooling, number of siblings, household

structure, net family income, AFQT score, age at high school graduation, and existence of a

local college, from the NLSY79 empirical sample used to estimate the model. The dynamic

programming problem is then solved for each individual, and their choices on schooling and

employment are simulated. I also simulate observed wages (for those who are employed) and

potential wages (for both employed and non-employed individuals). The true wage equation

is determined by Equation (13). I attempt to recover the returns to schooling parameters

presented in Table 4.
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Table 6 presents the descriptive statistics of the simulated sample. These descriptive

statistics are nearly identical to those of the NLSY79 sample used to estimate the choice

model. Mother’s average school attainment is 12.3 years, and father’s average schooling is

slightly higher at 12.6 years but is more dispersed. Individuals in the sample have close to

three siblings, and 86% of them lived with both parents at age 14. Net family income is

above 65,000 in 2000 dollars. On average, the women graduated from high school at the age

of 17.9, and they continued for more than two years of college after graduating from high

school and had close to six years of total work experience. The average observed hourly wage

is approximately 9.70 dollars, whereas the potential hourly wage is below the observed wage

at 9.38, as predicted by the economic theory.

4.2 OLS Estimates

Table 7 reports the OLS estimates of the wage equation using simulated wages. I also report

the White—Huber standard errors that consider the correlation at the individual level over

time.19 In the first two columns, I use observed wages for those employed that take into

account measurement errors. In the benchmark specification in column 1, the schooling

coeffi cient is approximately 10.3%. As more background variables are added as controls in

column 2, the schooling coeffi cient decreases slightly to 10.1%. This result indicates upward

ability bias, given that background variables are likely proxy for innate ability. To investigate

the potential bias attributable to measurement error in wages, the dependent variable used

in columns 3 and 4 is the simulated true wage. The estimated coeffi cients based on true

wages are almost identical to those based on observed wages, but they are more precisely

estimated. Overall measurement error in wages does not seem to play a significant role in

the wage equation estimates. In the last two columns, the schooling coeffi cient drops to 9.8%

and 9.1% when I run the same regressions by using all potential (true) wages simulated from

the model, for all individuals both employed and non-employed. This result suggests that

employment selection may be important. Compared with the true parameter values in Table

4, the coeffi cients on years of schooling are upward biased in all OLS regressions.

To investigate the effects of ability selection in OLS estimates, Table 8 compares the true

wage equation parameters with the OLS estimates controlling for skill types. In particular,

I estimate the wage Equation (13) using simulated observed wages and all potential wages,

while each individual’s skill type is assumed to be known. Schooling coeffi cient is set to

19The estimates reported in Table 7 are based on a pooled repeated cross-sectional sample. Alternatively,
I have selected randomly one wage per individual to form a cross-section of wages. The coeffi cient estimates
in the wage equation are very similar to those reported in Table 7 but are less precise, given that the number
of observation is considerably smaller.
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be type-specific, whereas all other parameters in the wage equation are independent of skill

type. Estimated coeffi cients on years of schooling for all types are significantly lower than

the estimates based on the pooled sample shown in column (1) of Table 7. When observed

wages are used as the dependent variable, the schooling coeffi cients are downward biased

for all skill types. However, when all potential wages are used in the regression, as the last

column of Table 8 shows, the point estimates of wage equation parameters are very close to

the true values.

Estimates in Table 8 reveal that ability selection is the main driving force behind the

upward bias in OLS estimates of schooling coeffi cient, but endogenous employment selec-

tion is also a non-negligible source of bias. I simulate wages for homogeneous samples to

investigate further the sources of bias aside from ability selection. The discrete choice model

is estimated on three skill types. I start with simulating 100,000 individuals for 10 years for

skill type one by set model parameters to type one’s specific estimates. I then repeat the

procedure for type two and type three. Within each set of simulated data, all individuals

have the same ability and preferences.

Table 9 presents OLS estimates on these homogeneous samples, where both observed

wages and all potential wages are again used as dependent variables. When the endogenous

employment decision is not considered, estimates of schooling coeffi cients using observed

wages are biased for all three homogeneous samples. For the type one individuals who spend

less time in school and who work longer, the selection effect attributable to endogenous

employment is relatively small; for the types two and three who spend more time in the non-

employment state, the biases are considerably larger. The differences in schooling and labor

market outcomes are determined by the ability and preference heterogeneity demonstrated

in Table 4. The economic theory described in Section 2 predicts that if the sample is

homogeneous and employment decision is exogenous, OLS estimates are consistent and

unbiased. Consistent with this prediction, estimates using all potential wages return unbiased

estimates of schooling returns for each skill type in Table 9.

4.3 IV Estimates

The conventional IV approach estimates the following two-equation system describing the

determination of earnings and years of schooling:

lnwit = Xitδ+β1Sit + εit,

Sit = Zitα+ uit,
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where X and Z are the vectors of observed attributes, with X usually including experience,

experience square, and other control variables. The IV approach identifies β1 only if two

conditions are satisfied. First, some of the variables in vector Z are not contained in X, and

they are strongly correlated with schooling outcome. Second, an IV that is not correlated

with the error term in the wage equation, that is, Cov (Zit, εit) = 0, must exist. In what

follows, two different instruments used in the literature are considered. Individual choices

and wages are simulated, in which people are randomly assigned to a control group and a

treatment group given each of the instruments. OLS and IV estimates from the reduced-

form wage equations are presented and compared.

Example one: Local college

The first set of instruments for education that I explore is based on the existence of a

local college, following the idea of Card (1993). As specified in Equation (14), the existence

of a local college provides a source of variation in education outcome by shifting the cost of

school in the underlying data-generating process. IV identification relies on the inclusion

of a dummy variable for the presence of a college in the county of residence in the set of

variables Z. The dummy variable is set to one if a local college exists. Table 10 summarizes

the estimates using the conventional OLS approach and using IV s based on local college.

Column 1 presents the OLS estimate of the returns to schooling, which is upward biased

and similar to results in Table 7. In columns 2 to 9, I compare estimates using simulated

data from four different instrument variable designs based on local college. In addition, the

upper panel A uses observed wage data generated by the decision model, and the lower panel

B uses all potential wage data for both employed and non-employed individuals.

I will start with the simulated observed wages. First, I simulate a textbook-style strong

IV in a sample of 100,000 individuals, among which a randomly selected half is assumed

to live in a county with a local college, with the rest living in a county without a local

college. This instrument is correlated with education outcome through Equation (14) in the

schooling decision process, but is not correlated with the error term in the wage equation

by the random design. Therefore, this instrument provides exogenous variation to recover

the effect of schooling on earnings. Column 2 shows the coeffi cient of an indicator for local

college in the first-stage regression for years of schooling. As expected, the existence of a

local college has a positive and significant effect on schooling outcome. Column 3 reports

the second-stage estimate of return to schooling to be 4.9%, which is considerably lower than

the OLS estimate in column 1 and lies within the support of the underlying true rates of

returns between 2.9% and 5.9%.

In the NLSY79 sample, approximately 88% of the individuals live in a county with a two-

year or four-year college. Next, I simulate an instrument based on local college that mimics
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the actual data available. Specifically, I simulate another sample of 100,000 individuals,

and let a randomly selected 88% of them live in a county with a local college. Given the

random assignment, the second instrument based on local college is also not correlated with

wage errors, but is still correlated with schooling outcome. However, this instrument does

not induce as much schooling variation as the first instrument. Columns 4 and 5 present

two-stage least squares (2SLS) results. Although in the first stage, local college still has a

significantly positive effect on schooling outcome, the estimated 12.2% return to schooling

is upward biased and larger than the OLS estimate. This instrument that is based on local

college appears to be a weak instrument.20

The existence of a local college is, thus far, rendered completely exogenous by the random

experimental design. However, households with different socioeconomic backgrounds choose

to live in different neighborhoods and counties. For instance, in the NLSY79 sample, 91%

of the households in the top quartile of income live in a county with a local college, but for

the bottom quartile, only 85% live near a college. All households with a college graduate

mother live near a local college, whereas the number drops to 80% for households with a high

school dropout mother. Given that family background is correlated with individual ability

as in Equation (12), whether a person lives in a county with a local college is also likely

to be correlated with her ability. To investigate the effects of these correlations, I simulate

a third instrument based on local college. In particular, when simulating the decisions for

100,000 individuals, I allow the proportion living near a local college to be 48%, 50%, and

52% for skill types one, two, and three, respectively. The 2SLS results based on simulated

data are presented in columns 6 and 7 of Table 10. When the exogeneity assumption of the

instrument is violated, the estimated return to schooling becomes even more biased than the

OLS estimate. In the last two columns of Table 10, I investigate whether the bias in the IV

estimator can be corrected by controlling for the observed family and cognitive background.

After adding the background variables, the explanatory power of local college on schooling

outcome is weakened, but the estimated return to schooling in the second stage is almost

identical to that in the regression without background variables.

Panel B presents regression results using all potential wages from model simulations.

Similar to observations from Table 7, the bias in OLS estimates tends to be smaller when

employment selection is controlled. When a strong instrument is used, the estimated return

lies within the support of the true returns and is more precisely estimated (column 3). If

the instrument is weak or correlated with the unobservables (column 5, 7, and 9), estimates

using all potential wages are not necessarily less biased than those using observed wages

20Stock and Yogo (2002) define an instrument as weak if the bias of the IV estimator exceeds that of OLS
by a certain threshold, for example, 10%.
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because the employment selection may also be correlated with the unobservables.

Example two: School subsidy program

The second set of instruments I consider is based on a college subsidy program. A school

subsidy will increase the incentive for people to attend and continue college. IV identification

relies on the inclusion of a dummy variable for school subsidy in the set of variables Z. Table

11 summarizes the estimates using the conventional OLS approach and using IV s based on

college subsidy. Column 1 shows the OLS estimate of return to schooling, which is again

upward biased. In columns 2 to 9, I compare estimates using simulated data from four

different instrument variable designs based on school subsidy.

I first simulate schooling, employment, and wages for a sample of 100,000 individuals,

in which half is kept as the control group, and the other randomly selected half is exposed

to a 50% tuition subsidy program. By experimental design, the school subsidy program

is correlated with the education outcome but not with the error term in wage. Column 2

shows the first-stage result. As expected, school subsidy has a positive and significant effect

on educational attainment. The IV estimate of return to schooling is 2.6%, as column 3

presents. Given that the lower bound of the true return is 2.9%, this value is a downward

biased estimate of the true return.

To investigate the sensitivity of the IV estimates to the size of the school subsidy, I

simulate another 100,000 individuals, in which a randomly selected half is eligible for a 10%

reduction in tuition. Columns 4 and 5 present the 2SLS results. In this case, school subsidy

has a smaller, yet still significantly positive effect on schooling outcome. The estimated

schooling coeffi cient, however, becomes upward biased and larger than the OLS estimate,

similar to the weak instrument case presented in Table 10.

A school subsidy program is generally either need-based or merit-based. In both cases,

eligibility is correlated with family background and unobserved ability. Therefore, in the

third simulation of an instrument based on school subsidy, I let the proportion eligible

for a 50% tuition subsidy to be 48%, 50%, and 52% for skill types one, two, and three,

respectively. As shown in column 7, when the exogeneity assumption of the instrument is

violated, the estimated returns to schooling become upward biased and slightly greater than

the OLS estimate. The bias in the IV estimator remains even after the observed background

variables are controlled in column 9.

The regression results in Panel B confirm the findings in Table 10. The bias in OLS

estimates is smaller when all potential wages are used (column 1). Column 3 shows that

when a strong instrument is used and employment selection is controlled, the IV estimate

lies within the support of the true returns. On the contrary, if the instrument is weak or

correlated with the unobservables (column 5, 7, and 9), estimates using all potential wages
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are still biased.

To summarize, the discrete choice model makes explicit the dynamic selection process

that determines wages, education outcome, and work experience. The results indicate that

the model is capable of accounting for the relatively low returns to schooling with high ob-

served estimates from OLS and IV estimates. The population appears to be heterogeneous

in returns to schooling (schooling coeffi cient) and preferences for school and for work (util-

ity parameters). Each dimension of heterogeneity plays a role in generating the observed

estimates of schooling coeffi cient. Ability selection is the major source of upward bias in

the OLS estimates of return to schooling, whereas preferences for school and for work may

determine the sign of bias for a sample with homogeneous ability. Furthermore, the dynamic

employment selection is not innocuous in estimating the return to schooling.

An unbiased estimate of weighted average return to schooling may be generated by using

the IV approach, but the requirements are stringent. First, the instrument must be strongly

correlated with education outcome. Second, the instrument cannot have any correlation

with wage errors. Finally, dynamic employment selection needs to be controlled. When

all these three conditions are satisfied, I find that the IV estimator is bounded by the

maximal and minimal returns to schooling in the population. If any of the conditions is

violated, an IV estimate may lie outside the support of the distribution of true returns

and may be greater than corresponding OLS estimate. In particular, IV estimates are

very sensitive to the variations in schooling induced by the instrument. A small correlation

between the instrument and the unobserved heterogeneity may result in a large bias in the

estimated schooling coeffi cient, which cannot be easily mitigated by the addition of more

control variables.

5 Concluding Remarks

This paper aims to investigate the applicability of a dynamic discrete choice model of school-

ing and employment in accounting for the observed OLS and IV estimates of returns to

schooling in a log earnings function. I estimate a dynamic discrete choice model of endoge-

nous schooling and employment decisions and then attempt to use simulated data to recover

the (known) parameters on schooling returns. I find relatively low returns from the structural

model, but OLS and IV estimates can be considerably higher. Both theoretically and em-

pirically, I show that the dynamic model can reproduce the observed estimates of schooling

returns. Analysis based on simulated data reveals that ability selection is the major source

of bias in the OLS estimates of schooling returns. Although a well-designed IV estimator

lies between the maximal and minimal returns to schooling in the population, the estimates
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are sensitive to a weak instrument, the correlation between instrument and wage errors, and

to employment selection, which are common features of non-experimental data.

Aside from instrument exogeneity, this study finds that the effects of dynamic employ-

ment decision and instrument relevance are far from innocuous in estimating schooling re-

turns.21 Recent developments in the microeconometric theory of treatment effects and mar-

ginal returns to policies and its applications in estimating returns to schooling (Heckman and

Vytlacil 2001, 2005; Carneiro, Heckman and Vytlacil 2010, 2011) are primarily set within a

static environment with a strong instrument. Extension to a dynamic framework and the

consideration of weak identification are important topics for future research.

21Using a calibrated model, Belzil and Hansen (2008) also find that the consideration of employment
selection is important in the estimation of schooling returns.
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Table 1

Comparison of OLS and IV Estimates Under Different Assumptions

OLS IV

Exogenous employment decision

Homogeneous ability bOLS = b

Heterogeneous ability, constant return bOLS > b bIV = b, bIV < bOLS

Heterogeneous ability and heterogeneous return bOLS > b bIV T b, bIV < bOLS

Endogenous employment decision

Homogeneous ability bOLS < b bIV < b, bIV = bOLS

Heterogeneous ability bOLS T b bIV T b, bIV T bOLS

Note. b: average returns to schooling; bOLS: OLS estimates; bIV : IV estimates.

Table 2

Choice Proportions and Average Wages by Years After High School

Year No. Obs Not work Work Average wage

No School School No School School

1 (487) 18.7 37.8 32.9 10.7 6.17

2 (486) 13.6 32.1 42.2 12.1 6.81

3 (485) 14.6 28.7 46.0 10.7 6.93

4 (481) 13.7 22.5 52.4 11.4 7.59

5 (478) 12.6 8.2 69.7 9.6 8.01

6 (475) 14.7 5.5 73.1 6.7 10.01

7 (472) 17.6 3.8 72.5 6.1 11.38

8 (470) 17.2 3.2 73.2 6.4 12.66

9 (469) 19.4 3.4 71.2 6.0 12.65

10 (467) 21.6 2.8 69.6 6.0 12.70
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Table 3

Transition Matrix

Choice (t)

Choice (t− 1) No school, no work School, no work No school, work School, work

No school, no work

Row % 60.6 5.4 33.3 0.7

Column % 58.6 6.8 8.2 1.4

School, no work

Row % 6.7 57.8 20.2 15.3

Column % 6.8 76.2 5.2 29.8

No school, work

Row % 9.0 1.2 85.9 3.9

Column % 33.0 5.9 80.5 27.3

School, work

Row % 2.9 15.4 42.8 38.9

Column % 1.6 11.1 6.1 41.5
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Table 4

Estimates of the Wage Equation and Preference Heterogeneity

Parameter Estimate (Standard Error)

Women’s Post-School Wage Function

Years of schooling skill Type One β1
1 0.029 (0.0026)

Years of schooling skill Type Two β2
1 0.043 (0.0021)

Years of schooling skill Type Three β3
1 0.059 (0.0020)

Years of experience β2 0.091 (0.0072)

Experience squared β3 -0.002 (0.0008)

Constant β0 1.367 (0.0313)

True error standard deviation σw 0.370 (0.0018)

Measurement error standard deviation σu 0.199 (0.0010)

Consumption Value of College

skill Type One v1
1 -1.415e+5 (8.949e+3)

skill Type Two v2
1 8.396e+4 (4.477e+3)

skill Type Three v3
1 9.326e+4 (5.008e+3)

Value of Non-employment

skill Type One v1
2 -1.842e+4 (3.437e+3)

skill Type Two v2
2 3.206e+3 (3.257e+3)

skill Type Three v3
2 1.606e+4 (3.673e+3)

Cost of returning school

skill Type One v1
3 -5.100e+4 (2.279e+4)

skill Type Two v2
3 -1.254e+5 (4.993e+3)

skill Type Three v3
3 -2.081e+4 (8.679e+2)

Consumption Value of College

Work, skill Type One v1
4 -3.036e+4 (1.268e+4)

Work, skill Type Two v2
4 -7.275e+4 (6.673e+3)

Work, skill Type Three v3
4 -1.250e+4 (6.394e+3)
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Table 5

Fit of the Transitions Rates

From\To No school, no work School, no work No school, work School, work

No school, no work 29.1 (60.6) 8.2 (5.4) 57.9 (33.3) 4.8 (0.7)

School, no work 12.1 (6.7) 52.0 (57.8) 19.7 (20.2) 16.2 (15.3)

No school, work 14.1 (9.0) 1.1 (1.2) 81.8 (85.9) 3.0 (3.9)

School, work 12.0 (2.9) 25.4 (15.4) 33.4 (42.8) 29.2 (38.9)

Note. Data moments are in parentheses.

Table 6

Descriptive Statistics of the Simulated Sample

Variable Mean Std. Dev.

Family and cognitive background

Mother’s schooling 12.29 2.02

Father’s schooling 12.60 2.96

Number of siblings 2.78 1.78

Proportion living with both parents at 14 0.86 0.35

Net family income 65,482 32,981

AFQT percentile score 54.05 23.81

Age at high school graduation 17.89 0.43

Schooling and labor market outcome

Highest grade completed (HGC) 14.23 2.21

Years of experience 6.09 1.96

Observed hourly wage 9.70 5.19

Potential hourly wage 9.38 4.62
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Table 7

OLS Wage Equation Estimates

Independent Variables Observed wages True wages All potential wages

(1) (2) (3) (4) (5) (6)

Years of Schooling (β1) 0.103 0.101 0.103 0.101 0.096 0.091

(3.4e-4) (4.3e-4) (3.1e-4) (3.9e-4) (2.7e-4) (3.2e-4)

Years of Experience (β2) 0.084 0.085 0.085 0.085 0.071 0.074

(7.7e-4) (7.7e-4) (6.9e-4) (6.8e-4) (5.0e-4) (5.1e-4)

Experience2 (β3) -0.001 -0.001 -0.001 -0.001 -2.8e-4 -5.0e-4

(9.6e-5) (9.6e-5) (8.5e-5) (8.5e-5) (6.7e-5) (6.8e-5)

AFQT Score 3.5e-4 3.4e-4 6.6e-4

(3.2e-5) (2.9e-5) (2.5e-5)

Mother’s Schooling 4.4e-4 3.5e-4 0.001

(3.9e-4) (3.6e-4) (3.0e-4)

Father’s Schooling 0.001 0.001 0.002

(2.6e-4) (2.4e-4) (2.1e-4)

Family Income 0.001 0.001 0.001

(in 10 thousands) (3.4e-4) (3.0e-4) (2.9e-4)

Number of Siblings 4.9e-5 -6.6e-5 1.5e-6

(2.2e-4) (2.0e-4) (1.7e-4)

Living with Parents -0.030 -0.030 -0.038

(0.002) (0.002) (0.002)

Constant 0.515 0.531 0.515 0.533 0.656 0.672

(0.005) (0.006) (0.004) (0.006) (0.003) (0.005)

No. of observations 604,858 604,858 604,858 604,858 1,000,000 1,000,000

R-squared 0.248 0.249 0.295 0.295 0.272 0.274
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Table 8

OLS Wage Equation Estimates: Control for Types

Independent Variables True value Estimates using

Observed wages All potential wages

Years of Schooling

type one 0.029 0.016 0.028

(0.001) (4.2e-4)

type two 0.043 0.034 0.042

(0.001) (3.3e-4)

type three 0.059 0.055 0.059

(0.001) (3.4e-4)

Years of Experience 0.091 0.088 0.092

(0.001) (5.0e-4)

Experience2 -0.002 -0.002 -0.002

(9.4e-5) (6.6e-5)

Constant 1.367 1.536 1.373

(0.010) (0.005)

Table 9

OLS Wage Equation Estimates on Homogeneous Samples

Type One Wage Type Two Wage Type Three Wage

Observed All Observed All Observed All

Years of Schooling 0.031 0.029 0.037 0.043 0.050 0.059

(0.002) (0.002) (5.0e-4) (2.7e-4) (5.9e-4) (3.0e-4)

Years of Experience 0.091 0.091 0.077 0.091 0.093 0.091

(6.2e-4) (4.7e-4) (0.001) (6.2e-4) (0.001) (5.9e-4)

Experience2 -0.002 -0.002 -1.3e-4 -0.002 -0.002 -0.002

(7.4e-5) (5.8e-5) (1.6e-4) (1.1e-4) (1.4e-4) (7.5e-5)

Constant 1.347 1.370 1.506 1.365 1.607 1.365

(0.028) (0.023) (0.008) (0.004) (0.008) (0.004)

No. of observations 815,685 1,000,000 463,884 1,000,000 341,019 1,000,000

R-squared 0.177 0.223 0.108 0.212 0.232 0.329

Note. Regressions are based on the simulation of 100,000 individuals of each type for 10 years.
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Figure 1: Fit of Choice Proportions
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Figure 2: Actual and Predicted Wages
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